

Tolerances

- Geometric tolerances are controls that effect the shape and/or orientation of features.
- **Tolerance** is the total amount a dimension may vary and is the difference between the maximum and minimum limits.
- Tolerances are assigned to mating parts. For example, the slot in the part must accommodate another part. A system is two or more mating parts. One of the great advantages of using tolerances is that it allows for interchangeable parts, thus permitting the replacement of individual parts.

 For example, A tolerance of 4.650 ± 0.003 means that upper limit (largest value) for part is 4.653, the lower limit (smallest value) is 4.647, and the tolerance is 0.006

(A) Direct limits

(B) Tolerance values

Tolerances are expressed as:

- 1. Direct limits, or as tolerance values applied directly to a dimension
- 2. Geometric tolerance
- 3. Notes referring to specific conditions
- 4. A general tolerance note in the title block

1. Direct limits or as tolerance values applied directly to a dimension.

(A) Direct limits

(B) Tolerance values

2. Geometric tolerances & dimensioning.

- Tolerance can be unilateral or bilateral.
- A unilateral tolerance varies in only one direction, while a bilateral varies in both directions.
- If the variation is equal in both directions, then the variation is preceded by a <u>+</u> symbol. The plus and minus approach can only be used when the two variations are equal.

Important terms in ASME Y14.5M-1994 (A system of two part with tolerance dimension)

Fit types

- The degree of tightness between mating parts is called the fit.
- Clearance fit occurs when two toleranced mating parts will always leave a space or clearance when assembled.

The largest that shaft (A) can be manufactured is .999 and the smallest the hole can be is 1,000. The shaft will always be smallest than the hole

Formula:

Fit types

- Interference fit occurs when two toleranced mating parts will always interfere when assembled.
- This fit type would be necessary to *stretch* the hole or *shrink* the shaft or to use force to press the shaft into the hole.

Fit types

• **Transition fit** occurs when two toleranced mating parts will sometimes be an interference fit and sometimes be a clearance fit when assembled.

Fit type determination

- The loosest fit is the difference between the smallest feature A and the largest feature B.
- The tightest fit is the difference between the largest feature A and the smallest feature B.

Functional dimensioning

- When dimensioning a part it is critical to start out by identifying the functional features first.
- Many times these features are holes.
- Any other features @1.50±.05that come in contact with other parts, especially moving parts, are considered functional. Dimension these features first, then all other nonfunctional features can be considered.

Tolerance Stack-Up

- The additive rule for tolerances is that tolerances taken in the same direction from one point of reference are additive
- The corollary is that tolerances to the same point taken from different directions becomes additive.
- The effect is called tolerance stack-up

Tolerance stack-up (cause assembly problem)

Tolerance stack-up eliminated (used same reference)

Alternate dimension (A method locating the pattern first)

(A) No!

<u>Coordinate dimension</u> <u>stack-up</u>

Avoid coordinate dimension stack-up by using a common point and dimensioning the hole spacing directly (B)

Metric limits and fits

- The standards used for metric measurements are recommended by the ISO and are given in ANSI B4.2-1978
- The terms used in metric tolerencing are follows:

• **Basic Size** is the size to which limits of deviation are assigned and are the same for both parts.

	Size, m	Basic Size, mm				
1st Choice	2nd Choice	1st Choice	2nd Choice			
1.0	—		7.0			
—	1.1	8.0	—			
1.2	—	—	9.0			
—	1.4	10	—			
1.6	—	—	11			
—	1.8	12	—			
2.0	—		13			
	2.2	14	—			
2.5	—		15			
—	2.8	16				
3.0	_		17			
—	3.5	18	—			
4.0	—	—	19			
—	4.5	20	—			
5.0	—	—	21			
	5.5	22	—			
6.0	—		23			
—	6.5	—	24			

	ISO S	ymbol		1
	Hole Basis	Shaft Basis	Description	
1	H11/c11	C11/h11	Loose running fit for wide commercial tolerances or allowances on external members	clearance
nce fits -	H9/d9	D9/h9	Free running fit not for use where accuracy is essential, but good for large temperature variations, high running speeds, or heavy journal pressures	More cle
- Clearance fits	H8/f7	F8/h7	Close running fit for running on accurate machines and for accurate location at moderate speeds and journal pressures	
	H7/g6	G7/h6	Sliding fit not intended to run freely but to move and turn freely and locate accurately	
ts	H7/h6	H7/h6	Locational clearance fit provides snug fit for locating stationary parts but can be freely assembled and disassembled	
Transition fits	H7/k6	K7/h6	Locational transition fit for accurate location; a compromise between clearance and interference	
Tra	H7/n6	N7/h6	Locational transition fit for more accurate location where greater interference is permissible	rference
fits-	H7/p6*	P7/h6	Locational interference fit for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements	More interference
Interference fits-	H7/s6	S7/h6	Medium drive fit for ordinary steel parts or shrink fits on light sections; the tightest fit usable with cast iron	
- Inte	H7/u6	U7/h6	Force fit suitable for parts that can be highly stressed or for shrink fits where the heavy pressing forces required are impractical	ł

*Transition fit for basic sizes in range from 0 through 3 mm

Metric symbols and their definitions

H – Hole basis is the system of fits where the minimum hole size is the basic size.

 \mathbf{f} – Shaft basis is the system of fits where the minimum shaft size is the basic size.

Three methods of showing metric tolerance symbols used for dimensions

40H8	40H8 (40.039 40.000)	(40.039 40.000) 40H8
(A)	(B)	(C)

The values in parentheses are for reference only and come from ANSI Standard B4.2-1978 tables

		LO	OSE RUNN	NING	FR	EE RUNN	CLOSE RUNNI		
BASIC SIZE		Hole H11	Shaft c11	Fit	Hole H9	Shaft d9	Fit	Hole H8	Shaft f7
40	MAX	40.160	39.880	0.440	40.062	39.920	0.204	40.039	39.975
	MIN	40.000	39.720	0.120	40.000	39.858	0.060	40.000	39.950
50	MAX	50.160	49.870	0.450	50.062	49.920	0.204	50.039	49.975
	MIN	50.000	49.710	0.130	50.000	49.858	0.080	50.000	49.950
60	MAX	60.190	59.860	0.520	60.074	59.900	0.248	60.046	59.970
	MIN	60.000	59.670	0.140	60.000	59.826	0.100	60.000	59.940

Example Determine the Tolerance using The Hole Basis System

- Given:
 - A shaft & Hole
 - The hole basis system
 - Clearance fit, and
 - A basic diameter of 41mm for the hole

Example Determine the Tolerance using The Hole Basis System Solution:

- <u>STEP 1:</u>
 - From Table ANSI preferred metric sizes, assign the basic size of 40mm to the shaft

Basic m			Size, m		
1st Choice	2nd Choice	1st Choice	2nd Choice		
	7.0	25			
8.0	—		26		
	9.0		28		
10	—	30	—		
	11		32		
12	—	35	—		
_	13		38		
14		40	—		
	15		42		
10		45			

Example Determine the Tolerance using The Hole Basis System Solution:

- <u>STEP 2:</u>
 - From Table ISO preferred metric fits, assign the sliding fit H7/g6. Sliding fit is defined in the table

	ISO S	ymbol		1
	Hole Basis	Shaft Basis	Description	
1	H11/c11	C11/h11	Loose running fit for wide commercial tolerances or allowances on external members	clearance
nce fits -	H9/d9	D9/h9	Free running fit not for use where accuracy is essential, but good for large temperature variations, high running speeds, or heavy journal pressures	More cle
- Clearance fits	H8/f7	F8/h7	Close running fit for running on accurate machines and for accurate location at moderate speeds and journal pressures	
+	H7/g6	G7/h6	Sliding fit not intended to run freely but to move and turn freely and locate accurately	

Example Determine the Tolerance using The Hole Basis System

Solution:

- STEP 3 (For Hole):
 - Determine the upper and lower limits of the hole from ANSI Standard B4.2-1978 tables. Using column H7 and row 40
 - From the table, the limits are 40.025 and 40.000

ſ			LOOSE RUNNING			FREE RUNNING			CLOSE RUNNING			SLIDING		
	BASIC SIZE		Hole H11	Shaft c11	Fit	Hole H9	Shaft d9	Fit	Hole H8	Shaft f7	Fit	Hole H7	Shaft g6	Fit
	40	MAX MIN	40.160 40.000	39.880 39.720	0.440 0.120	40.062 40.000	39.920 39.858	0.204 0.060	40.039 40.000	39.975 39.950	0.029 0.025	40.025 40.000	39.991 39.975	0.050 0.009

Example Determine the Tolerance using The Hole Basis System

Solution:

- STEP 4 (For Shaft):
 - Determine the upper and lower limits of the shaft from ANSI Standard B4.2-1978 tables. Using column g6 and row 40.
 - From the table, the limits are 39.991 and 39.975

ſ			LOOSE RUNNING			FREE RUNNING			CLOSE RUNNING			SLIDING		
	BASIC SIZE		Hole H11	Shaft c11	Fit	Hole H9	Shaft d9	Fit	Hole H8	Shaft f7	Fit	Hole H7	Shaft g6	Fit
ſ	40	MAX MIN	40.160 40.000	39.880 39.720	0.440 0.120	40.062 40.000	39.920 39.858	0.204 0.060	40.039 40.000	39.975 39.950	0.029 0.025	40.025 40.000	39.991 39.975	0.050 0.009

NEXT continue to GDT 3